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Abstract

Recently, Gaussian Splatting (GS) has been widely used in avatar reconstruction, achieving high-fidelity and real-time rendering
by utilizing a differentiable rasterizer. Despite its remarkable performance, reconstructed Gaussians are often misaligned from the
actual surface which leads to geometric errors. We propose to utilize monocular geometric cues in optimization in order to
improve the geometric accuracy of GS-based human avatar reconstruction. We obtain monocular geometric cues from images using
recent monocular depth and normal estimation models. The monocular geometric cues encourage 3D Gaussians to be aligned with
the ground-truth surface. To prove the effectiveness of monocular geometric cues, we conduct the ablation study and measure
geometric accuracy and rendering quality of 3D Gaussians reconstructed from monocular video human dataset. We demonstrate
improvements in both rendering quality and geometric accuracy in GS avatar reconstruction with monocular geometric consistency
term.
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| . Introduction

Realistic avatar reconstruction has been intensively stud-
ied towards the seamless connection between the real and
the virtual world. However, there is a trade-off between re-
construction quality and speed. Implicit function based ap-

M achieve fast inference for 3D human ava-

proaches PIFu
tars but require a huge training cost and large human scan-
ning datasets, resulting in low geometric accuracy. In con-
trast, neural-based surface reconstruction NeRF*! has been
widely used in avatar reconstruction, especially for novel
view synthesis, due to its outstanding rendering quality.
Nevertheless, inverse skinning, fast reconstruction and re-
al-time rendering are still challenging with neural
representations.

Recently, Gaussian Splatting (GS)™ has been proposed
for addressing both reconstruction quality and speed in
training and rendering. GS applied in avatar reconstruction
is compatible with skinning methods , thanks to its explicit
point-based representation. However, as noted in works
like SuGaR™! and 2DGS™", GS suffer from misalignment
between the reconstructed Gaussians and the ground-truth
surface.

Inspired by MonoSDF!"), we propose a method that im-
proves the geometric accuracy of Gaussians by utilizing
monocular geometric cues in training. We align monocular
depth maps to rendered depth maps by adjusting the scale
and the depth offset using a least-square method. Then, we
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encourage the Gaussians to be aligned to the aligned mon-
ocular depth cue. We demonstrate that utilizing monocular
cues on 3D human avatar reconstruction improves both the

geometric and rendering quality.

Il. Related Work
1. Monocular Geometric Cue Estimation

MonoSDF!"!  demonstrates that the use of a gen-
eral-purpose monocular estimator significantly improves
both reconstruction quality and geometric accuracy for

large scenes. Omnidata’

, used in [1], estimates monocular
depth cues for a wide range of scenes. DN-Splatter™ uti-
lizes Omnidata and ZoeDepth™ to enhance the geometry
alignment in Gaussian Splatting using monocular depth and
normal cues. ZoeDepth extends the relative depth pre-
diction of MiDa$S. Metric3Dv2 is a monocular estimation
method based on Vision Transformer and ConvGRU. It ad-
dresses depth ambiguity by transforming images into the
canonical camera space. To overcome the scarcity of sur-
face normal datasets, Metric3Dv2 uses joint learning for
depth and normal. DepthAnythingv2™® employs a teach-
er-student framework, where the teacher is trained on syn-
thetic datasets to circumvent the noise and incompleteness
in real-world datasets. Recently, diffusion models like
Marigold® and GeoWizard” have been proposed.
Marigold, a depth estimation model, proposes training sole-
ly on synthetic datasets. GeoWizard introduces a cross-
attention mechanism to ensure consistency between depth
and normal predictions. However, diffusion-based models
are known to be time-consuming.

On the other hand, ECON" introduces a normal in-
tegration method for reconstructing clothed humans from
a single image. It estimates the front and back normal maps
using a GAN-based model, as seen in [12], and this normal

estimator can serve as a monocular cue. Additionally, the
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recent model Sapiens“o], based on a Vision Transformer,
offers broad applicability to various human-related tasks.
To enhance generalizability, it uses the Human-300M data-

set for pretraining, achieving state-of-the-art performance.

2. Gaussian splatting in Avatar Reconstruction

Gaussian splatting (GS) has been applied to various
fields of 3D reconstruction due to its reconstruction quality
along with fast training and rendering times. However, the
reconstructed Gaussians are not aligned with the actual
geometric surfaces. To address this, SuGaR™ introduces
regularization for Gaussian shapes and locations, while
2DGS™ and GaussianSurfel®! propose 2D Gaussians to
resolve multi-view inconsistencies. Nevertheless, they do
not address dynamic scenes or have not explored recent
monocular estimators.

Some GS-based avatar reconstruction methods have been
proposed. [15] uses pose features to decode Gaussian pa-
rameters for dynamic texture representation. [16] re-
construct a template by multi-view stereo then learns a net-
work to estimate Gaussian maps from a position map at

each time step. GART!, on the other hand, employs a

RGB
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Gaussian Gaussian Depth Map
Gaussian Deformation
Normal Map

Rendered Image

learnable skeleton to represent loose clothing. Though
these models show high rendering quality, they still suffer
from inaccurate 3D surfaces reconstructed by Gaussians.
We improve 3D avatar reconstruction using monocular
geometric cues. We compare different monocular geo-
metric estimators in terms of depth and normal accuracy

on human datasets.

1. Method
1. Preliminary: Gaussian Splatting

3D Gaussian Splatting (3DGS)™ introduces volumetric
3D Gaussians to represent 3D scenes. Each 3D Gaussian
represents a small cloud, having positional and radiometric
properties such as mean position #, rotation R, scale s,
opacity o, and view dependent color c. Then, the Gaussian
distribution at position x is parametrized by x and 3D co-
variance matrix ¥ = RSSTRT as below:

G(x):eXp(—é(x_#)TEﬂ(r—ﬂ)) @)

The 3D Gaussian is splatted onto the image plane by the

Photometric Consistency Loss

Input Frames
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Fig. 1. Overview of Gaussian Splatting avatar reconstruction using monocular geometric cues
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elliptical weighted average (EWA) approximation since
there is no analytic form to represent Gaussian projection.
To accelerate the Gaussian rendering process and make it
differentiable, the Gaussian renderer is implemented as the
GPU-parallelized differentiable rasterizer. The rasterizer
sorts Gaussians by depth from the view-point in fast
tile-based approach. Then, Gaussians are blended with oth-
er Gaussians using the alpha-blending technique as shown

in Equation 2:

i—1

clx)="Y co; GZD<JC)H< 1—0,G7( )) (2)

i=1 ji=1

where ¢(z) is color of a pixel x, G*/x) is a dis-
tribution of the ith Gaussian along ray x, o; and g; are an
opacity and a distribution of the jth intersected Gaussian
before the ith Gaussian.

The goal of optimizing 3D Gaussians is to encourage

rendered images /,,, aligned with ground-truth images 7,

ren
so that Gaussians represent the appearance of the 3D scene.
To this end, the difference between two images is com-
puted as an objective function of the optimization process.

This photometric loss L, , is computed as the combination

rgb

of0 L, loss and D— SSIM loss.

|+ AssmSSIM(1,

Lw (1 ASSIM| rend rend’ ]gt) (3)

During optimization, overly-large Gaussians or sparse-
ly-distributed Gaussians are struggling to reconstruct the
surface and its texture. To alleviate this problem, 3DGS
clone Gaussians in under-reconstructed regions and split

large Gaussians in over-reconstructed regions.

2. Overview

We set GART!™. which is the state-of-the-art avatar re-

construction model by combining 3DGS with avatar re-

construction, as the baseline for our clothed human
reconstruction. We first initialize Gaussians on the 3D
body template mesh defined in the canonical space in
Section 3.3. Then, Gaussians are deformed into the frame
space by LBS in Section 3.4. and rendered into images.
Our Gaussians learn the avatar’s shape and appearance
while minimizing the loss introduced in Section 3.5. The

implementation details are described in Section 3.6.

3. Initialization

We define the canonical space of the avatar as the space
with a “Da”-posed 3D body template as shown in Figure
1. “Da”-pose is a stance where the arms and legs are spread
out wide to the both sides and it allows to reconstruct con-
cave regions since a stretching-out stance reduces occlu-
sions and overlaps between body parts. We locate
Gaussians on the canonical mesh vertices. The orientation
of each Gaussian aligns with normal of the mesh, scale is
proportional to the face area, the opacity and the color are

set to 0.9 and 0.5, respectively.

4. Deformation

Gaussians in the canonical space are animated according
to the SMPL parameters 6, at time ¢ based on LBS. While
the pose changes, the effects of key points on adjacent sur-
faces vary. We update the blending weight W, of the kth
key-point motion at each ith Gaussian by A w:

V,I}k(#): LAV RNT) (4

In clothed human reconstruction, it is challenging to de-
scribe cloth deformation by the traditional skinning method
which represents deformation of a human skin. To account

for dynamic cloth surfaces, we employ learnable latent
bones B(6,) = [ B, B

t,n,

to increase the expressivity of
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the surface deformation model:

/‘:‘,i = A, [r 1] r (6)

’

where i indexes over Gaussians, x,;/ is a deformed
Gaussian mean position to time ¢ frame space W is the
t,ny

are SMPL bones. #, and », are number of SMPL bones

and latent bones respectively. Then, Gaussians in the posed

blending weight of latent bones and B(6 [B, 1B,

space are rendered into a RGB image, a normal map, and
a depth map to compute loss and optimize Gaussians by

following Section 3.5.

5. Optimization

We train Gaussians defined in the canonical space, their
temporal deformation field for a given pose sequence dur-
ing optimization. To make Gaussians of an avatar learn the
appearance and 3D surface, we penalize the difference be-
tween rendered images and captured images and leverage
the monocular geometric prior to enhance the surface
details.

The photometric consistency loss Z,, is the radiometric
difference between the reconstructed video frames 7,,,,

L,.,. and observations

srend *

L‘ng 72 (1 ASSHW) |]t rend
ASSIMSS]M( t, rend’ [l, Gl)’

VA +
ool (7

where ¢ is a time index. We penalize the photometric con-
sistency loss to enhance the reconstruction fidelity.

The photometric consistency loss may not be sufficient
to reconstruct smooth and natural surfaces. To resolve this

issue, we leverage monocular geometric priors [1], which

represent general surface shapes for given observation,
in order to facilitate natural surface reconstruction. We
encourage the reconstruction to have general surface
orientations by fitting normal with monocular ob-

servation:
norm Z H‘N; rend 1V, m(mo‘ + H 1- N rend N mmo” : (8)

is rendered normal and N,

t,mono

where N, 1S monocu-

7md
larly estimated normal.

We also utilize a monocular depth prior, representing the
relative distance among pixels. We align the monocular
depth map D, to the reconstructed depth map D,

,INONO rend

by scaling w and shifting ¢ since there is the scale and

shift ambiguity in monocular depth estimation:

Lay =2 (@

1‘ rend + q ‘l)l‘,m”’mH (9)

We encourage the smooth appearance by minimizing the
standard deviation of Gaussian properties among K-nearest

points:

Lsmmth = Z A[?m[)ertySTDiEKNN(ul)(propertyi)(]0)

propertys {R,s,o, w;

where property; is a property of the ith Gaussian. In ad-
dition, We regularize non-rigid motion and size of

Gaussians:

Loei = Al Dy |+ 251 W) [+ 2 0s: 11 ()

where / means the i" Gaussian.

The total loss is sum of all loss terms for N Gaussians:

Ltotal Argergb + Anmenmm + Ad@pLde/)
(12)
AT Z smoot hyi sazla.i )
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6. Implementation Details

We jointly train Gaussian properties and motion pa-
rameters by applying the Adam optimizer with learn-
ing rates for each parameter the same as in [14], and
other Adam hyperparameters are left at their default
values of 8,=0.9, 8, =0.999, and e=10"%. We set A
for each loss term as 4,, =10, 4,,,, = 4,, =0.05 and
A5 A5 Ao Aproperr, the same as in [14]. The Gaussian pa-
rameters are optimized by stochastic gradient descent
method for each time step ¢ where ¢ is randomly sampled
from the training input video frame sequence. The entire
framework is trained and tested on a single NVIDIA RTX
A6000 GPU, with training times within 5 minutes and
rendering times about 150 FPS.

IV. Experiments
1. Comparison between Monocular Estimators

Our Gaussian avatar learns surface of the object from
monocular geometric cues. This makes the reconstruction
quality of our method depend on monocular cue estimator
performance. Thus, we analyze the state-of-the-art monocu-
lar normal and depth estimation models by qualitative and
quantitative comparisons.

We evaluate the performance of normal and depth es-
timation of monocular estimators. We wuse the
Thuman3.0"'"! dataset, a real-world capture dataset of
clothed humans which includes a variety of human and
clothing scenes. It consists of 20 different clothed hu-
mans, each including between 15 to 35 pose sequences.
For our evaluation, we select 5 poses from each clothed
human. Since captured images are not provided, we syn-
thesize multi-view images of scenes using the provided
meshes and textures. For rendering, 8 point lights are

placed at vertices of the bounding box surrounding the

human mesh. We render four images from the front,
back, and sides. The RGB images are used as input for
the monocular estimation models, while rendered nor-
mal and depth maps are served as ground-truth data for

evaluation.

1.1. Comparison on Surface Normal Estimation

We compare monocular estimators in terms of normal
prediction. The evaluation metric “angular mean” repre-
sents the average angular distance, measured in degree, be-
tween rendered normals and the ground-truth. Lower val-
ues indicate better performance. The “ratio within X met-
ric represents the ratio of pixels whose angular distance
with the ground-truth is less than x degrees. Higher ratio
indicates higher performance. For Omnidata™, we use two
approaches proposed in DN-Splatter™: Omnidata-low and
Omnidata-hd. The Omnidata-low approach resizes an input
image, estimates normals, then resizes it back to the origi-
nal resolution. The Omnidata-hd approach divides an input
image into patches with overlaps and aggregates estimated
normals of patches by aligning them with others.

In the case of Marigold'®, whose original version only
estimate depth, we use the normal pretrained model avail-
able on Hugging Face. For Sapiens!'”, we use the
Sapiens-2B model trained with 2 billion parameters.

Table 1 shows that Omnidata-hd performs better than
Omnidata-low. However, both Omnidata-based methods
exhibit lower performance than other methods, indicating
inadequacy of the model for human scenes. Vision
Metric3Dv2®!  and
Sapiens-2B  outperform diffusion-based models like
Marigold and GeoWizard”, and ECON"! demonstrates

competitive results. GeoWizard, in particular, shows sub-

Transformer-based models like

optimal performance in normal prediction. In contrast,
Sapiens, which leverages pretraining on a large human-cen-
tric dataset, achieves the highest performance among the
evaluated models.

Figure 2 illustrates the qualitative performance of mon-
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Table 1. Quantitative comparison of monocular normal estimation models (Red: 1st place, Blue: 2nd place)

Omnidata-low | Omnidata-hd | ECON | Metric3Dv2 | Marigold | Geowizard | Sapiens-2B
Angular Mean (degree °) | 31.3234 29.2753 22.4001 17.5526 20.0852 51.5194 13.2728
Ratio within 11.25° (%) 1 11.1618 13.4923 26.8539 | 38.3021 31.1509 6.1990 57.0686
Ratio within 30° (%) t 54.2361 59.6652 76.7818 | 86.3450 80.9942 | 29.0239 92.4686

Ground-truth

Omnidata-low Omnidata-hd ECON

T2l 2, ook W HM o 2ol X v

Metric3Dv2

Marigold Geowizard Sapicens-2B

Fig 2. Qualitative comparison of monocular surface normal estimation models

ocular estimators. Omnidata-low lacks detail due to its
resolution limitations, and while Omnidata-hd addresses
alignment in the overlap regions, it still struggles with
overall consistency. ECON captures large wrinkles well
but fails to estimate precise normal direction. Marigold
captures details effectively but lacks a sense of depth.
Metric3Dv2 is highly accurate but suffers from in-
accurate facial normals due to limited exposure to hu-
man scenes during training. Sapiens produces results

close to the ground truth.

1.2 Comparison on Monocular Depth Estimation

We measure two depth metrics for the comparison of

monocular estimators: AbsRel and st AbsRel represents
the relative difference |d — d|/d between the ground-truth
depth map d and the estimated depth map 4 with scale and
shift adjustment. s! represents the percentage of pixels
whose ratio between the ground-truth and predicted values
is below the threshold (1.25). We use the implementation
of ZoeDepth® in DN-Splatter.

Table 2 demonstrates that Metric3Dv2 and Sapiens out-
perform other methods significantly. GeoWizard shows
comparable performance to Marigold and ZoeDepth.
Conversely, DepthAnythingv2®® produces results that de-
viates significantly from the ground truth. Overall, Sapiens

demonstrates the most realistic results.

E 2. Ciot 00| o5 DYe| U BT (#1415, TRI; 25)

Table 2. Quantitative comparison of monocular depth estimation models (Red: 1st place, Blue: 2nd place)

ZoeDepth DepthAnythingv2 Metric3Dv2 Marigold Geowizard Sapiens-2B
AbsRel | 0.0321 0.1745 0.0197 0.0357 0.0327 0.0129
81 0.9989 0.7008 0.9999 0.9958 0.9937 1.0000
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Ground-truth

ZoeDepth DepthAnythingv2
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Fig. 3. Qualitative comparison of monocular depth estimation models

Figure 3 illustrates qualitative performance of monocular
estimators. DepthAnythingv2 fails to align the scale and
shift correctly due to the large difference between the mini-
mum and maximum depth scales. ZoeDepth, Marigold, and
GeoWizard appear to lack high-frequency details. In con-
trast, Metric3Dv2 and Sapiens produce results that closely

approximates the ground truth.

2. Avatar Reconstruction

We evaluate the geometric quality of avatar re-
construction. We use the RANA!" dataset, a photorealistic
synthetic dataset of clothed humans that provides normal
maps, camera parameters, and SMPL!"" parameters. We se-
lect 5 subjects for evaluation. Each subject contains 150
frames, with the first 100 frames used for Gaussian opti-

mization and the remaining 50 frames reserved for testing.

Metric3Dv2

Marigold Geowizard Sapiens-2B

We conduct qualitative and quantitative comparison. We

use Sapiens!'”

as a model for monocular geometric con-
sistency due to its superior performance demonstrated in
Sections 4.1.2 and 4.1.3. Table 3 quantitatively verifies that
the monocular geometric consistency constraint improves
both rendering quality and geometric quality. Specifically,
after the GS process, the accuracy of the normal map is
significantly improved.

Figure 4 shows the qualitative comparison between the
baseline and reconstruction with monocular consistency
constraint. The normal map reconstructed with the monocular
consistency prior is smoother, aligned to the ground-truth, and
reducing noise in the texture of the rendered RGB images.
Notably, it is challenging for the Gaussian to reconstruct
wrinkles in clothing, but Sapiens’ precise normal and depth
estimation plays a key role in improving the geometric quality
of the clothing, especially in capturing the folds.

¥ 3. Ctot HME 225t Gaussian Splatting OFHIEF Ai7HA HiAlo] b H|m
Table 3. Quantitative comparison of Gaussian Splatting avatar reconstruction using monocular cues

Sequence Method PSNR 1 SSIM 1 LPIPS | Angular Mean (°) | % within 11.25° T | % within 30° 1
GART 30.8105 0.9847 0.0117 45.6566 2.0187 25.1155
Subject_31
Ours 31.7329 0.9864 0.0137 42.9615 1.9636 27.2319
GART 29.3117 0.9832 0.0188 46.0633 2.2215 25.2712
Subject_41
Ours 30.3213 0.9848 0.0206 41.7219 2.2367 33.2051
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Ground-truth

-

Ours
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Fig. 4. Qualitative comparison of Gaussian Splatting avatar reconstruction using monocular cues

V. Conclusion

In this work, we propose to utilize monocular geometric
cues to enhance surface alignment and geometric accuracy
of reconstructed Gaussians in GS avatar reconstruction. To
this end, we compare the performance of various monocu-
lar estimation models in human scanning dataset. We con-
clude that Sapiens, pretrained on enormous collection of
human datasets, is the most powerful tool for human-cen-
tric tasks. Thus, we apply this model to GS avatar re-
construction and we demonstrate that monocular geometry
cue estimated by Sapiens leads to smoother and aligned

texture and normal of reconstructed Gaussians.
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