
Gi Woong Chae et al.: Smart Contract of Trustworthy Music Management for WEB Service 1123

Smart Contract of Trustworthy Music Management for WEB Service

Gi Woong Chaea), Youngmin Kimb), and Sang-Kyun Kima)‡

Abstract

Efficient music data management and fair and prompt distribution of profits to music copyright holders remain long-standing
problems in the music industry. Blockchain and smart contracts attract attention as effective technologies to solve these problems.
This paper demonstrates the basic architecture for a music management system using blockchain and smart contracts. The functions
of music registration (registration of copyright holder), music sales, music usage fee settlement, and finally, music disposal must all
be reflected in smart contracts To manage music decentralized and efficiently. Using these smart contracts, we focus on
implementing music management services for fair and immediate profit distribution through sequential execution processes between
major entities. Gas reduction methods on smart contracts are applied to save gas; its reduction rate reaches about 30%. Through
repeated tests, the main functions (e.g., contract creation, music purchase, settlement) were shown to work well, and the stability
of the proposed smart contract was proved.

Keyword : Music industry, Blockchain, Smart contract, Online music distribution, Music revenue settlement

Ⅰ. Introduction

In the pre-Internet era, the music industry experienced
long-term sustained, with a handful of record labels known
as major record labels (Sony BMG, Universal Music
Group, Warner Music Group, and EMI). Music was physi-
cally distributed so that record labels controlled entire sup-
ply chain, like retail CDs. Because of this, most of the val-

ue chain and all transaction data were captured by record
labels.

With the popularization of the Internet, physical dis-
tribution became meaningless. New and disruptive business
models, such as NAPSTER’s peer-to-peer music-sharing
network, have dramatically increased music piracy. As
sales in the music industry declined exponentially, the need
for restructuring the existing business model became
apparent.

One of the significant turning points in the industry was
the launch of the iTunes Store, an online platform created
by Apple, which has radically changed how we consume
music. Songs were no longer a physical commodity, and
consumers could purchase music through any Apple device

a) Department of Convergence Software, Myongji University
b) Korea Electronics Technology Institute
‡Corresponding Author : Sang-Kyun Kim
 E-mail: goldmunt@gmail.com

Tel: +82-2-300-0637
ORCID: https://orcid.org/0000-0002-2359-8709

․Manuscript October 14, 2024; Revised November 21, 2024; Accepted
November 25, 2024.

Copyright Ⓒ 2024 Korean Institute of Broadcast and Media Engineers. All rights reserved.
“This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.”

Special Paper
방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol. 29, No. 7, December 2024)
https://doi.org/10.5909/JBE.2024.29.7.1123
ISSN 2287-9137 (Online) ISSN 1226-7953 (Print)

https://crossmark.crossref.org/dialog/?doi=10.5909/JBE.2024.29.7.1123&domain=https://ksbe-jbe.org/&uri_scheme=http:&cm_version=v1.5

1124 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

without restrictions. However, record labels have not been
satisfied with Apple’s song pricing, and musicians have not
received sufficient royalties from Apple[1].

On-demand streaming platforms such as YouTube,
Spotify, and Apple Music are the most used tools for ac-
cessing music today. Consumers have faster, simpler, and
unlimited access to media. On the other hand, musicians
still have little influence over their creations and continue
to receive low rewards amid these turning points.

Blockchain enables establishing a transparent economic
system through recording music ownership, transparent and
rapid distribution of profits, and music management without
intermediaries[2-4]. Music creators are guaranteed quick and
transparent revenue by automating music registration and rev-
enue distribution using smart contracts[5]. Studies are pro-
posed for fast search and indexing of music using IPFS and
blockchain[6-7]. This paper proposes a method to solve the
problems of the existing music service system by introducing
a smart contract for efficient music management.

The structure of this paper is as follows. Section 2 ex-
plains the need for blockchain-based music management
(and smart contracts). Section 3 shows the architecture of
the music platform based on the blockchain. Section 4 ex-
plains how the entities that make up the music management
system perform music registration, purchase, and
settlement. Section 5 describes the main functions of smart
contracts for music management. Section 6 explains how
gas consumption can be reduced. Section 7 explains the
stability test results of the proposed smart contract. Section
8 discusses some limitations of the proposed method, and
then section 9 concludes with some general observations
and recommendations for ongoing work.

Ⅱ. Research Background

Music in the digital age is data. Metadata is data of data,
that is, information about music. The metadata included with

any music can include the copyright owner's terms of use
and contact details, making it much easier to find the owner
of the music and obtain permission to use it. Gradually de-
ploying copyright data on the blockchain could create one
comprehensive music copyright database[8].

Music contains at least two copyrights. One is the copy-
right of the recording itself related to the performer and
the record label, and the other is the copyright to the lyrics
and music related to the songwriter or composer and the
music publisher. These copyrights can be stored on the
blockchain via cryptographic hashes.

The average musician earns $23.40 for every $1,000 of
their music sold[9]. Net profit is only 2%. Music labels,
publishers, and streaming services perpetuate unequal con-
tracts by exploiting the information asymmetry between
themselves and content creators. Royalty payments for re-
cordings and music are very slow, taking months or years
to reach the bank accounts of copyright holders. Fees may
have been deducted from multiple performing rights associ-
ations until the money reached the rights holders[10].

Blockchain technology has the potential to change this
situation in many ways. In general, micropayments are pos-
sible due to the low transaction costs of cryptocurrencies
with a wide range of amounts up to 8 decimal places. Also,
content creators will be able to receive a very small amount
of ‘tip’[11].

The term smart contract refers to a blockchain-based
contract with conditional conditions that can be executed
automatically, such as settlements and asset transfers[12].
The application could be particularly innovative for the
music industry, as it supports automatic royalty payments
to artists and other actors holding stakes. Through smart
contracts, payments made by consumers when they down-
load, stream, or use music available on the blockchain net-
work do not go through a third party. Instead, all in-
formation needed to deliver payments to each shareholder
is on-chain and executed as specified in the contract. All
contributors to the song will not only receive their stake

Gi Woong Chae et al.: Smart Contract of Trustworthy Music Management for WEB Service 1125

immediately after the license to the song is granted but any
information generated by the transaction will also be made
available for data visualization and analysis techniques
(e.g., data mining). In other words, smart contracts elimi-
nate the need for content creators to navigate their way
through expensive purchasing platforms and financial inter-
mediaries, allowing them to sell their products directly to
fans, consequently eliminating all transaction costs[13].
More specifically, through smart contracts, music creators
can decide when/how/how much others can use their work
at a precise price.

In effect, running a smart contract over a blockchain net-
work eliminates the need for third-party intermediaries to
review or verify transactions. With these self-executing
contracts, all parties involved are bound by the rules and
decisions of the underlying code. Thus, smart contracts
could eliminate the need for lawyers and litigation in the
not-too-distant future and save content creators money.

This improved business model is especially valuable to
smaller content creators who can't make less money with-
out sponsorship from a major record label. With easy trad-
ing in an accessible and uncrowded marketplace, new ama-
teur content creators are expected to enter the new block-
chain-enabled music industry. This influx of new content

creators will lead to a quantitative influx of all published
music, expected to benefit fans and content creators.

Ⅲ. Architecture for Music Platform Based on
Blockchain

Figure 1 shows the overall architectural design from the
point of view of platform users, including music owners,
service providers, and end users. The architecture largely
consists of a service gateway, data exchange handling, an
intelligent data router, off-chain data, on-chain data, and an
intelligent engine.

 First, the service gateway unit comprises different man-
agement services such as DID, music, and access
management. Each service type has at least one smart con-
tract to enable different functions. All platform users must
have at least one DID to identify themselves through DID
management, and each DID is bound to a blockchain ac-
count to maintain uniqueness. Realized by a music service
agreement and music registration music management, ac-
cess management grants and confirms specific access
rights.

Fig. 1. Music supply and service architecture based on blockchain

1126 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

Second, the data exchange handling unit helps to ex-
change messages or refined data between music owners,
users, and content providers. The message processing unit
is in charge of recognizing message delivery and process-
ing errors. The data transforming unit is responsible for ex-
tracting feature values from input music, watermarking,
and processing all music-related metadata. In the intelligent
response unit, the intelligent engine formats the response
from the blockchain to be presented to the user.

Third, the intelligent data distribution unit stores all data
input from the user in the blockchain according to the char-
acteristics or delivers the response from the intelligent en-
gine unit to the user.

Fourth, the off-chain data processing unit stores original
music files and documents and stores access certificates, in-
cluding access rights for specific music.

Fifth, the on-chain data processing unit processes
on-chain data and business logic by applying blockchain
networks and smart contracts to the architecture design. At
this time, the blockchain can be used by selecting a public
or private blockchain depending on the nature of the sys-
tem, and the on-chain data includes DID, Agreement,
Music, and Access Certificate registries and smart contracts
that manage them.

Finally, an intelligent engine unit intelligently determines
the user’s (music owner, consumer, content provider) re-
quirements (e.g., search, recommendation) and provides an
optimal response.

This paper mainly focuses on developing on- and
off-chain data processing units.

Ⅳ. Smart Contract-Based Music
Management Sequence

The main functions for transparent music purchase and
settlement without an intermediary using the smart contract
are music upload, music purchase, and music settlement.

Each function’s main entities are Buyer, Seller,
SettlementContract, and Backend.

The Buyer is the music buyer, and the Seller is the music
copyright holder or music seller. SettlementContract is a
smart contract created by the Seller to distribute music
revenue. The Backend stores music and its related in-
formation and verifies the validity of the smart contract.
In addition, it confirms whether the transaction hash en-
tered into the Backend is generated from a valid contract.

1. Music Upload Sequence

Figure 2 shows the sequence diagram for music
registration. The Seller enters the necessary information for
music upload and uploads the music file to the Backend.
The Backend checks whether the uploaded music has al-
ready been registered. If it is not duplicate music, the Seller
will verify that all data required to generate the metadata

Fig. 2. Sequence diagram for music registration

Gi Woong Chae et al.: Smart Contract of Trustworthy Music Management for WEB Service 1127

is entered correctly. After verification, the Backend uploads
the music and its metadata to IPFS and returns songCid,
the IPFS CID created after metadata upload, to the Seller.

The Seller creates a SettlementContract by inputting
songCid and other necessary data. When the smart contract
address (SettlementContract) is transmitted to the Backend,
the Backend verifies the contract’s validity using the values
stored in the contract of the transmitted address.

As a result of verification, if it is a valid contract, the
message “Contract registration successful” is returned, and
the contract address is added to the database. The message
“contract registration failed” is returned if it is invalid.

2. Music Purchase Sequence

Figure 3 shows the sequence diagram of music purchases.

When the Buyer selects the music they want to purchase
and makes a purchase request, the Backend returns the
SettlementContract address of the music they want to buy
and metadata containing the music settlement information.
Here, the music settlement metadata includes the wallet ad-
dress of the copyright holder, the revenue distribution ratio
of the copyright holder, and the purchase amount per
music. The Buyer checks whether the hash value (i.e., kec-
cak256Hash) of the copyright holder’s wallet address and
distribution ratio with the keccak256Hash function matches
the keccak256Hash value returned from Settlement-
Contract. If the two match, the purchase proceeds with
buy(). The reason for comparing the copyright holder’s
wallet address and revenue distribution ratio from IPFS
with the corresponding information from Settlement-
Contract is to ensure that the music requested by the Buyer

Fig. 3. Sequence diagram for purchasing music

1128 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

has accurate music settlement information. The Buyer re-
cords the transaction record for the purchase on the block-
chain and sends the generated transaction hash to the
Backend.

The Backend uses the transaction hash to track the trans-
action record in the blockchain and verifies that the trans-
action contains valid transaction information. If it is a valid
transaction, a link to download the music is provided to
the Buyer, and transaction failure is returned if it is invalid.

3. Music Revenue Settlement Sequence

Figure 4 shows the sequence of music revenue
settlement. When desired, the Seller can call the settle()
function, an internal function of SettlementContract, and
receive a settling of revenue corresponding to the dis-
tribution ratio of copyright holders when registering music.
If it is not the author, SettlementContract raises an error.

Fig. 4. Sequence diagram for music revenue settlement

4. Music Destruction Sequence

Figure 5 shows the sequence of music destruction.
Among Sellers, only the creator (owner) of the Settlement-
Contract can destroy the contract through the destroy()
function that destroys the contract. Even if the subject that
executed the destroy() function is the owner of the
SettlementContract, if the balance inside the Settlement-

Contract is higher than the purchase price of the music, the
contract cannot be destroyed. The reason is that when the
destroy() function is executed, the contract balance is
moved to the wallet of the caller of destroy(). By exploiting
this, the contract owner can steal all the balance within the
SettlementContract. This process is to prepare for the time
when all balances in the SettlementContract cannot be set-
tled due to unforeseen circumstances.

Fig. 5. Sequence diagram for music destruction

Ⅴ. Implementations of Smart Contract

Using SettlementContract, the purchaser can send the
purchase amount of music to SettlementContract. The
amount accumulated in the contract wallet is settled and
paid at the distribution ratio promised when the registered
copyright holder requests settlement.

The Buyer can send the amount to purchase music
through the SettlementContract through the buy() (Figure
6②) function. The music copyright holder (i.e., Seller) set-
tles with SettlementContract’s settle() function (Figure 6③)
when desired.

The smart contract creator owns the SettlementContract,
and the smart contract can be destroyed if the balance of
the contract wallet is less than the specified “music pur

Gi Woong Chae et al.: Smart Contract of Trustworthy Music Management for WEB Service 1129

// SPDX-License-Identifier: AGPL-3.0
pragma solidity ^0.8.0.0;

contract SettlementContract {
 uint256 public price;
⑤… uint256 public cumulativeSales = 0;
 address public owner;
 bytes32 public keccak256Hash;
 bytes32[2] public songCid;

 mapping (address => copyrightHolder) public
copyrightHolders;

⑥… struct copyrightHolder {
 uint256 proportion;
④… uint256 count;
 }

 event logBuyerInfo(address buyer, bytes32[2]
songCid, uint256 amount);

②… function buy() public payable {
 require(
 price == msg.value &&
 cumulativeSales < type (uint256).max
);
 cumulativeSales += 1;
 emit logBuyerInfo(msg.sender, songCid, price);
 }

 event logRecieverInfo(address receiver, bytes32[2]
songCid, uint256 amount);

③… function settle() public {
 copyrightHolder memory caller =

copyrightHolders[msg.sender];
 require(
 caller.proportion > 0 &&
 cumulativeSales – caller.count > 0 &&
 cumulativeSales < type(uint256).max
);

 uint amount = price / 10000 * caller.proportion
* (cumulativeSales – caller.count);

 caller.count = cumulativeSales;
⑦… payable(msg.sender).transfer(amount);
 emit logRecieverInfo(msg.sender, songCid,

amount);
 }

⑧… function destroy() public {
 require(msg.sender == owner &&
 address(this).balance < price);
 selfdestruct(payable(owner));
 }

①… constructor(address[] memory _addresses,
uint256[] memory _proportions, bytes32[2]
memory _songCid, uint256 _price) {

 require(_price % 10000 == 0);
 owner = msg.sender;
 keccak256Hash = keccak256

(abi.encode(_addresses, _proportions));
 songCid = _songCid;
 price = _price;
 for(uint i=0; i<_addresses.length; i++) {
 copyrightHolders[_addresses[i]] =

copyrightHolder(_proportions[i], 0);
 }
 }
}

Fig. 6. Smart contract for music management

chase price”. The remaining balance in the destroyed
SettlementContract is transferred to the wallet address of
the smart contract owner. This restriction to destroy the
smart contract prevents an accident in which the contract
owner kills the contract without the other registered copy-
right holder’s consent and monopolizes the contract’s
balance.

1. Creation of Smart Contract

SettlementContract is created by the representative of the
music copyright holder or the music registrant. The creator
owns the contract and bears the distribution cost.

The constructor() (Figure 6①) is a constructor function
and works only once when creating a contract. The input
data of constructor() includes the wallet address of each
copyright holder, the profit distribution ratio of each copy-
right holder, the title of the music to be registered, the IPFS
CID containing music information such as lyrics, album,
composer, and singer, and the price of the music. The cost
of music shall be a multiple of 10,000. Also, the sum of
the revenue share ratio of each copyright holder is always
10,000. There is still no way to safely store or use decimals
in the solidity language (based on 0.8.0). Therefore, input
the profit distribution ratio by converting it to a natural
number value multiplied by 10,000 by the percentage
(0.00%) that allows each distribution ratio to two decimal
places. songCid receives a 46-character string that exceeds
32 bytes that the bytes32 data type can contain, and it must
also include various kinds of IPFS hashes.

The wallet address of the input author and the profit dis-
tribution ratio are stored in a 1:1 mapping as a key and
value, respectively, in a hash table data structure called sol-
idity mapping through a loop. The mapping value is de-
clared a copyrightHolder (Figure 6⑥) structure. The struc-
ture includes a variable count (Figure 6④) that stores the
number of times it has been settled and the profit-sharing
ratio.

1130 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

2. Purchase

The purchaser can transfer the music price to the contract
wallet through the buy() (Figure 6②) of the contract corre-
sponding to the desired music. If the remittance amount
does not match the music sales price or the cumulative
sales amount is the maximum value of the data type, it is
reverted (undone). The overflow of the corresponding vari-
able can be prevented using this restriction.

If the above conditions are satisfied, the remittance to
the contract wallet (CA) proceeds. When remittance pro-
ceeds, cumulativeSales increases by 1. After that, an event
occurs, and the purchaser’s wallet address, songCid of the
purchased contract, and purchase amount are recorded in
the event log of the transaction.

Since the maximum value of the data type of the cumu-
lative sales variable, cumulativeSales is set, when the in-
cremental sales reach the maximum value, no further pur-
chases can be made. The overflow occurs when an oper-
ation that exceeds the maximum value of the data type is
executed. If overflow occurs, the contract owner must dis-
card the current contract and create a new contract with
the same content.

3. Settlement

Suppose the music copyright holder intends to settle
through the music contract. In that case, the copyright hold-
er can execute the settle() (Figure 6③) function to receive
the music revenue settled in their wallet according to a pre-
determined ratio of the amount sold. The calculation meth-
od of the settlement amount is as follows.

 × ÷×

(1)

, where the price is the music price and proportion/10,000
is the settlement ratio. At this time, the proportion must

be less than or equal to 10,000, so the settlement ratio is
calculated as a float number. The cumulativeSales is the
cumulative sales volume, and the count is the number of
settlements. The settlement ratio per piece of music is mul-
tiplied by the number of times it needs to be settled. Since
caller.count (Figure 6④), which indicates the number of
times settlement has been received at the address after set-
tlement, is updated with the value of cumulativeSales
(Figure 6⑤). The duplicate settlement does not occur even
if sales and cumulative sales continue to increase. The
calculated settlement revenue is transmitted to the caller
of the settle() (Figure 6③) (the copyright holder) through
the transfer() (Figure 6⑦) function. After settlement, an
event occurs, and the address of the caller of the settle-
ment function, IPFS CID of settlement music, and settle-
ment revenue are recorded on the blockchain in the form
of an event log.

4. Destroy of Smart Contract

Only the settlement contract owner of the Settlemet-
Contract can destroy the contract, which is done through
the destroy() function (Figure 6⑧). Also, the destroy()
function can only be executed when the caller is the con-
tract owner and the balance in the contract wallet is lower
than the music price. This restriction prevents the forced
destruction of smart contracts in the unsettled state. In other
words, the contract owner cannot monopolize the revenue
from music sales through the destruction of the contract
when the respective copyright holders have not yet been
settled.

The contract destruction is carried out due to a break-
down in an agreement between the copyright holders. Or
it is necessary to recreate the contract after destruction due
to contract defects (e.g., incorrect address input, incorrect
distribution ratio input, reaching the maximum number of
cumulative purchases of the contract).

Gi Woong Chae et al.: Smart Contract of Trustworthy Music Management for WEB Service 1131

Ⅵ. Gas Consumption Reduction

The cost of gas is one of the major problems in im-
plementing blockchain systems or services adopting the
smart contract. Therefore, developers need to design smart
contracts to minimize gas consumption. Some points on
how to save gas consumption are described as follows:

- Reduce Smart Contract’s capacity by deleting the re-
quired statement’s error message.

- Using struct and mapping can save gas costs compared
to defining general state variables, so struct and map-
ping are used to store the wallet address of the copy-
right owner, distribution ratio, and settlement count.

- Refrained from using modifiers because using modi-
fiers cost a lot of gas.

- If the require statement is used unnecessarily several
times in a function, the number of executions of the
require function may increase, which may result in ad-
ditional gas costs.

Table 1 shows the gas consumption results before and
after applying the gas reduction methods described above.
The results show that about 30% gas reduction was
achieved.

Ⅶ. Experiments

1. Objective

There are no exact evaluation criteria for testing smart
contracts. Therefore, this experiment focused on testing the
stability of the proposed smart contract. The experiment
checks whether each function in the contract works pre-
cisely and whether there is no error even if the function
is repeatedly executed.

2. Experimental setups

The experiment used Truffle.js, an Ethereum develop-
ment framework, and mocha.js, an experimental
framework. The experimental environment used ‘Ganache’,
which creates a local Ethereum blockchain network
environment.

The hardware setups for the experiment are as follows.
- OS: Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-57-ge-

neric x86_64)
- CPU: 11th Gen Intel(R) Core (TM) i7-11700K @

3.60GHz
- GPU: NVIDIA Corporation GA106 [GeForce RTX

3060 Lite Hash Rate]

1) The total cost of all gas required to process a transaction.
2) The cost of running a virtual machine, which is the gas cost of running a function or action of a smart contract. Include virtual gas consumption

for all compute operations and resource access that occur within the execution function.

Tasks Cost(unit: gas) Before applying the gas
reduction methods

After applying the gas
reduction methods

Creation of contract
Transaction cost1) 1,128,730 790,924
Execution cost2) 976,720 662,406

Execution of buy()
Transaction cost 53,349 36,249
Execution cost 32,285 15,185

Execution of Settle()
Transaction cost 66,075 65,722
Execution cost 45,011 44,658

Total 2,302,170 1,615,144

Table 1. Gas consumption report before and after applying the gas reduction methods

1132 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

- memory: 16GB
- storage: 1TB SSD

Other experimental setups include as follows.
- experimental Platform: Truffle Framework 5.8.03)

- blockchain network: Ganache localNet

The gas setting value of the Ganache local blockchain
is as follows.

- gas price4): 20 Gwei
- gas limit5): 6721975 Wei
- call gas limit6): 9007199254740991 Wei

3. Experimental results

We created 10,000 wallets using Ganache for the experi-
ment and initially allocated 10,000 ETH to each wallet.
When a contract is created, six people are registered as
copyright holders. One of the accounts created is assumed
to be the Buyer’s account. When a contract is created every
time, the Buyer executes the purchase function in the cre-
ated contract to transfer the amount corresponding to the
price of the sound source to the contract.

Figure 7 shows the experimental process flow diagram
described as follows.

3) Truffle Framework: node.js-based smart contract production and experiment environment.
4) price per 1 gas set by Ganache.
5) Amount of gas that can be consumed in one transaction.
6) Limit of gas used when handling external calls such as external contract function calls in Ethereum.

TruffleTest

TruffleTest

Ganache

Ganache

ContractCreator

ContractCreator

Buyer

Buyer

SettlementContract

SettlementContract

01.Create�10,000�wallets

02.
Allocate�10,000�ETH�to�
each�wallet

03.
Connect�Ganache�LocalNet�to�Truffle�
(link�wallet�address�account)

04. Designate�a�wallet�address�for�one�
Buyer�(music�buyer)

loop [1,666�repetitions]

05. Sequential�designation�of�wallet�
addresses�of�6�copyright�holders�
without�duplication

06.
Designate�a�ContractCreator�
among�6�copyright�holders

07.
Create�contract

(Registration�of�6�copyright�holders�in�input))

08. Request�contract�song�price�and�details

09. Provide�contract�details�(song�price)

10. Executing�the�purchase�function

11.
Cumulative�Sales�
Update

12.

logBuyerInfo�event�
firing13.Return�purchase�TxID

14. Purchase�confirma
tion�verification

15. Execute�the�settlement�function

16.Return�of�settlement�amount

17.

logRecieverInfo�event�
firing

18.Return�settlement�TxID

19. Check�the�settlement�by�comparing�the�difference�in�the�wallet�
balance�of�your�account�before�and�after�settlement20. Process�complete

21. Test�done�(closed)

Fig. 7. Diagram of the experimental process

Gi Woong Chae et al.: Smart Contract of Trustworthy Music Management for WEB Service 1133

1. Create 10,000 wallets using Ganache (local Ethereum
blockchain environment).

2. Allocate 10,000 ETH per account to the created wallet.
3. Connect the Ganache local network to the Truffle test

framework.
4. The Buyer (music buyer) designates the wallet address

of one person.
[Repeat 5-20 1666 times.]
5. Designate the wallet addresses of 6 copyright holders

(original authors) sequentially without duplication.
For example, if wallets 1, 2, 3, 4, 5, and 6 served
as copyright holders before, wallets 7, 8, 9, 10, 11,
and 12 act as copyright holders next time.

6. Designate one ContractCreator (contract creator/dis-
tributor) among six copyright holders.

7. The ContractCreator creates a contract by inserting six
people, including himself, into the list of copyright
holders.

8. The Buyer requests the SettlemetContract for the con-
tract’s song price and music information to test the
purchasing function.

9. The SettlemetContract returns the requested song price
and music details to the Buyer.

10. The Buyer executes the purchase function with the
price matched to the price of the song provided by
the SettlemetContract.

11. When the purchase function is executed, the
SettlemetContract increases the cumulative sales of
the corresponding song in the contract by 1.

12. Execute logBuyerInfo() to generate an event log on
the blockchain.

13. After the purchase function execution, the Settlemet-
Contract returns TransactionID containing the trans-
action record of the buy() function execution.

14. The Buyer verifies transaction validity using
TransactionID provided by the SettlemetContract.
The Buyer is set to perform transaction validation
logic, and the validation process follows the given

validation procedure in the test code.
15. The ContractCreator executes the settlement function

to request settlement of the proceeds in the contract.
16. The SettlemetContract checks whether the target of

executing the settlement function is one of the copy-
right holders, settles the proceeds stored inside the
contract by the settlement ratio entered when creat-
ing the contract, and returns them to the Contract-
Creator.

17. The SettlemetContract executes logRecieverInfo() to
generate an event log for settlement.

18. The SettlemetContract returns TransactionID to
ContractCreator after executing the settlement
function.

19. The ContractCreator compares the balance before ex-
ecuting the settlement function with the balance after
execution to check if the settlement amount has en-
tered its wallet.

20. TruffleTest confirms that the testing process is
complete. Repeat the test process from step 5.

21. End the test after completing 1,666 loops.

The contract creation, purchase, and settlement tests
were repeated 1,666 times, and about 28 minutes were
consumed. As a result of conducting repeated tests to con-
firm the stability of the contract, it was confirmed that the
test was completed. In other words, no errors occurred
within the test environment even after repeated use, pur-
chase, and contract settlement.

Ⅷ. Discussion

There are several limitations exist in the proposed smart
contract system. There is a limit to keeping the wallet ad-
dress of the music copyright holder and the profit dis-
tribution ratio of the copyright holder completely private.
The reason is that the copyright owner’s wallet address and

1134 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

revenue distribution ratio are permanently stored in an im-
mutable state in the contract. Due to the nature of
Ethereum smart contracts, the information contained in the
contract code is open to everyone. In the current Solidity
language, there is no way to make the state variable in-
cluded in the contract code completely private.

In addition, when the copyright owner of the music cre-
ates a settlement smart contract for his song, there is a limit
that he can no longer receive a settlement for the song if
he loses control and ownership of the wallet address he
wrote down. Suppose the music copyright holder loses
their wallet for any reason or changes their address and dis-
cards the previous wallet. In that case, the copyright holder
cannot receive revenue from their song forever.

The currently proposed system has limitations in not ach-
ieving complete decentralization in providing songs after mu-
sic settlement. Until the settlement of music revenue, reliable
transactions are carried out through the blockchain network
without intermediaries, so it can be considered decentralized.
Still, valid transactions are determined through a centralized
backend system after settlement. In addition, it was not a fully
decentralized music trading platform in that it received a song
download link from the backend system.

In addition, there is an unclear problem of whether the
contract is legally valid. Currently, the validity period of
copyright in the United States is 70 years after death, but
theoretically, contracts can remain on the blockchain even
after 70 years after death. In addition, smart contracts are
not legally proven transaction systems, and smart contract
codes on the blockchain appear the same regardless of
country, so there are insufficient plans for dealing with dif-
ferent copyright laws in each country.

Ⅸ. Conclusions and Future Work

Music data management and fair and prompt revenue
distribution to copyright holders remain long-standing

problems in the music industry. Blockchain and smart con-
tracts attract attention as effective technologies to solve
these problems. This paper described a concrete im-
plementation example of a smart contract combined with
a blockchain for effective music management. Research on
using NFT (Non-Fungible Token) for music ownership
transfer should be continued further to vitalize more trans-
parent revenue distribution and copyright protection.

References

[1] Baumeister, H., Koch, N. and Mandel, L., Towards a UML Extension
for Hypermedia Design. in UML 1999, (1999), 614-629.

[2] Beck, K. Extreme Programming Explained. Addison-Wesley, 1999.
[3] Burdman, J. Collaborative Web Development. Addison-Wesley, 1999.
[4] Ceri, S., Fraternali, P. and Bongio, A., “Web Modeling Language

(WebML): a modeling language for designing Web sites,” Proceedings
of WWW9 Conference, (Amsterdam, 2000).

[5] Conallen, J. Building Web Applications with UML. Addison-Wesley,
1999.

[6] Kyoung-Sik Lee, Sang-Kyun Kim, “Music Source and Signature
Storage Method using Blockchain and Distributed Storage System,”
JOURNAL OF BROADCAST ENGINEERING, 24(6), 956-964,
2019.

[7] Sang-Kyun Kim, Kyoung-Sik Lee, “Music Source Signature Indexing
Method for Quick Search,” JOURNAL OF BROADCAST
ENGINEERING, 26(3), 321-326, 2021.

[8] O’Dair, Marcus, Zuleika Beaven, David Neilson, Richard Osborne,
and Paul Pacifico. 2016. “Music On The Blockchain.” Blockchain for
Creative Industries (BCI), Middlesex University.

[9] C. Byun, The Economics of the Popular Music Industry: Modelling
from Microeconomic Theory and Industrial Organization 95 (2014).

[10] Rethink music. 2015, Fair Music: Transparency and Payment Flows in
the Music Industry, Berklee Institute of Creative Entrepreneurship,
Accessed 22.10.15: static1.squarespace.com/static/552c0535e4b0afcb
ed88dc53/t/55d0da1ae4b06bd4bea8c86c/1439750682446/rethink_m
usic_fairness_transparency_final.pdf.

[11] Tapscott D, Tapscott A., “Blockchain Revolution: How the
Technology Behind Bitcoin is Changing Money,” Business and the
World, Penguin Random House: New York, 2016.

[12] Iansiti, Marco, and Karim R. Lakhani. 2017. “The Truth About
Blockchain.” Harvard Business Review.

[13] Yessi Bello Perez, Imogen Heap: Decentralizing the Music Industry
with Blockchain, Mycelia For Music, http://myceliaformusic.org/
2016/05/14/imogen-heap-decentralising-the-music-industry-with-blo
ckchain/, [https://perma.cc/LF2T-GYBK] (last visited Nov. 11, 2022)
(on file with the Harvard Law School Library).

Gi Woong Chae et al.: Smart Contract of Trustworthy Music Management for WEB Service 1135

Introduction Authors

Gi Woong Chae
- 2020. 02. ~ Current : Student, Department of Convergence Software, Myongji University
- 2022. 07. ~ 2024. 07. : Undergraduate Research Assistant, UX Media Lab, Myongji University
- ORCID : https://orcid.org/0009-0001-0530-3508
- Research interests : Blockchain, Smart Contract, Blockchain-Based Decentralized Identity and Data Management,

Artificial Intelligence, VR/XR

Youngmin Kim
- 2005. : B.S. in School of Electrical Engineering, Seoul National University
- 2011. : Ph.D in School of Electrical Engineering, Seoul National University (Integrated M.S and Ph.D)
- 2011. 3. ~ 2011. 10. : Postdoctoral Research Fellow, Seoul National University
- 2011. 10. ~ Current : Principal Research Engineer, Korea Electronics Technology Institute
- ORCID : https://orcid.org/0009-0002-2941-4197
- Research interests : Three-dimensiona display including hologrpahy, visual fatigue associated with three-dimensional

display, deep learning technology based on massive data, copyright protection (sound source, xr glass), and
multimodal AI applications (language and image)

Sang-Kyun Kim
- 1997. : Computer Science, Univ. of Iowa, B.S.(1991), M.S.(1995), PhD(1997)
- 1997. 03. ~ 2007. 02. : Professional Researcher, Multimedia Lab. of Samsung Advanced Institute of Technology
- 2007. 03. ~ 2016. 02. : Professor of Computer Engineering, Myongji University
- 2016. 03. ~ Current : Professor of Data Technology, Myongji University
- ORCID : https://orcid.org/0000-0002-2359-8709
- Research interests : Digital Content(image, video and audio) analysis and management, 4D media, Blockchain, VR,

Internet of Things and multimedia standardization

	Smart Contract of Trustworthy Music Management for WEB Service
	Abstract
	Ⅰ. Introduction
	Ⅱ. Research Background
	Ⅲ. Architecture for Music Platform Based on Blockchain
	Ⅳ. Smart Contract-Based Music Management Sequence
	Ⅴ. Implementations of Smart Contract
	Ⅵ. Gas Consumption Reduction
	Ⅶ. Experiments
	Ⅷ. Discussion
	Ⅸ. Conclusions and Future Work
	References

