
Jong-Min Lee et al.: Efficient 4DGS Model Compression Using a Spatiotemporal KNN Algorithm 1147

Efficient 4DGS Model Compression Using a Spatiotemporal KNN
Algorithm

Jong-Min Leea), Dong-Ha Kima), JunYoung Jeongb), GwangSoon Leeb), and Jae-Gon Kima)‡

Abstract

The MPEG INVR (Implicit Neural Visual Representation) Ad-hoc Group (AhG) is exploring potential standard technologies for
efficient representation and compression of 3D spatial videos using the explicit representation model of 3DGS (3D Gaussian
Splatting). This paper presents a compaction method for the Spacetime Gaussian (STG) model, which extends 3D Gaussians into
4D spacetime domain. The proposed method applies a KNN algorithm spatiotemporally to prune STGs. During this process, the
pruning ratio is adaptively adjusted based on the rendering quality loss to prevent excessive pruning and to maintain rendering
quality. Experimental results show that the proposed method demonstrates improved compaction performance compared to the
existing STG model in 6DoF video rendering, reducing the model size by 54% compared to the conventional STG model, with
only a 0.2 dB reduction in visual quality.

Keyword : Implicit Neural Visual Representation (INVR), 3D Gaussian Splatting (3DGS), SpaceTime Gaussian (STG),
KNN (K-Nearest Neighbor)

Ⅰ. Introduction

Recently, Implicit Neural Representations (INR)[1],
which represent 3D video through neural networks based

on Neural Radiance Fields (NeRF)[2], have gained attention
as new technologies for 3D video representation and
compression. INR models are learned via Multi-Layer
Perceptrons (MLP) and can synthesize novel dynamic
scenes at various time frames and viewpoints using learned
neural networks. To improve both the rendering speed and
quality of 3D representation models, hybrid methods[3] that
combine implicit and explicit representations, such as voxel
grids, have also been explored. However, despite the accel-
eration of the rendering process through hybrid methods,
there are still limitations in real-time processing of 3D
videos.

3D Gaussian Splatting (3DGS)[4] was originally devel-

a) Department of Electronics and Information Engineering, Korea
Aerospace University

b) Electronics and Telecommunications Research Institute (ETRI)
‡Corresponding Author : Jae-Gon Kim
 E-mail: jgkim@kau.ac.kr

Tel: +82-2-300-0414
ORCID: https://orcid.org/0000-0003-3686-4786

※This work was supported by the IITP grant (No. 2018-0-00207,
Immersive Media Research Laboratory) and the NRF grant (No.
RS-2024-00356924), both funded by the Korea government (MSIT).

․Manuscript October 22, 2024; Revised November 18, 2024; Accepted
November 18, 2024.

Copyright Ⓒ 2024 Korean Institute of Broadcast and Media Engineers. All rights reserved.
“This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.”

Special Paper
방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol. 29, No. 7, December 2024)
https://doi.org/10.5909/JBE.2024.29.7.1147
ISSN 2287-9137 (Online) ISSN 1226-7953 (Print)

https://crossmark.crossref.org/dialog/?doi=10.5909/JBE.2024.29.7.1147&domain=https://ksbe-jbe.org/&uri_scheme=http:&cm_version=v1.5

1148 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

oped as a technology optimized for real-time rendering of
static 3D scenes. 3DGS results in faster rendering speeds
compared to NeRF-based models by utilizing only explicit
representation with 3D Gaussians. More recently, a dynam-
ic model [5], [8] incorporating a temporal dimension into
the 3DGS framework has emerged. In [5], a canonical
space is utilized to extend the static capabilities of 3DGS,
enabling the handling of dynamic scenes. Another new ap-
proach for representing 3D dynamic scenes is based on the
Spacetime Gaussian (STG), which extends 3D Gaussians
into the 4D spacetime domain[8]. The STG model integrates
3D Gaussians and temporal elements to represent changes
in dynamic scenes, such as object emergence and motion,
and captures temporal variations using time-based parame-
ters and temporal radial basis functions.

Meanwhile, the Moving Picture Experts Group (MPEG)
has been evaluating implicit neural representations, hybrid
representations, and explicit representations as new ap-
proaches for 2D/3D static and dynamic video representa-
tion and compression. To explore potential standardization,
the Implicit Neural Visual Representation (INVR) Ad-hoc
Group (AhG)[6] is conducting Exploration Experiments
(EEs)[7]. EE2 focuses on investigating technologies to train
and compress 6DoF (Degrees of Freedom) video using 3D
INVR models. EE2.1 addresses NeRF-based implicit neural
models and hybrid representations, while EE2.2 explores
3DGS techniques that explicitly represent static 3D scenes
and dynamic 3DGS models, including a temporal
dimension.

This paper presents a compaction method for the STG
model[8], which is a dynamic 3DGS model corresponding
to INVR EE2.2. The STG model includes a preprocessing
step that uses K-Nearest Neighbors (KNN) to group
Gaussians along the same time axis and remove the top
25% of the closest pairs based on the distance between
Gaussians before training. However, despite this pre-
processing step, the resulting model still occupies approx-
imately 29MB of memory, indicating that further com-

pression techniques are required to make the STG model
memory efficient.

In this paper, the Gaussians present at each timestamp
undergo a preprocessing step that removes Gaussians based
on spatial correlation, as in [8]. Additionally, the KNN al-
gorithm is applied spatiotemporally to compact the model
while representing Gaussians that have been created or dis-
appeared during training. Following the Common Test
Condition (CTC) of INVR EE 2.2, we train the STG model
using the Mirror[7] sequence from the MIV (MPEG
Immersive Video) dataset, which consists of multi-view
videos. The results obtained from the proposed compaction
method are compared to those from models trained without
preprocessing and with preprocessing. Additionally, when
applying the proposed method to the STG model, we com-
pare the compression results based on two criteria: scale
and time distance. The proposed method demonstrates su-
perior compression performance relative to rendering qual-
ity compared to existing techniques.

In Section 2, we introduce the 3DGS model, which uses
explicit representation to model static 3D scenes, and the
STG model, which extends the static characteristics of
3DGS by incorporating a temporal dimension. In Section
3, a compaction method for the STG model that utilizes
spatiotemporal KNN is presented. Section 4 details the ex-
perimental results of the proposed method, and Section 5
concludes the paper.

Ⅱ. 3DGS and STG

1. 3DGS for static scene representation

3DGS[4] is a representative explicit model that utilizes
3D Gaussians to represent 3D space. It converts multi-view
images captured from various positions and angles into
point clouds using Structure from Motion (SfM), with these
points serving as the centroid of the 3D Gaussians.

Jong-Min Lee et al.: Efficient 4DGS Model Compression Using a Spatiotemporal KNN Algorithm 1149

Figure 1 illustrates the learning process of the 3DGS
model. The point clouds are used to initialize the 3D
Gaussians. The volume of each Gaussian can be repre-
sented by a covariance matrix, which can be decomposed
into scale and rotation matrices to represent the trans-
formed Gaussians during training. The color values are rep-
resented by Spherical Harmonics (SH) coefficients, with a
higher degree of SH coefficients allowing for more detailed
color representation. During the rendering process, the 3D
Gaussians are projected onto a 2D plane. The 2D
Gaussians are sorted in depth order for each pixel and ac-
cumulated to generate the rendered image. In addition, a
densification process is applied to clone or split the
Gaussians to fit the corresponding area. The parameters of
each Gaussian, such as position, rotation, scale, color, and
opacity are trained to minimize the difference between the
rendered view and the provided multi-view images.

2. STG for dynamic scene representation

3DGS is optimized for the real-time representation of

static 3D scenes, leading to the development of several dy-
namic models that incorporate a temporal dimension into
the structure of 3DGS. Figure 2 shows one of these dynam-
ic models[5]. In this model, 3D space is constructed using
explicit representations of 3D Gaussians, with changes in
position, rotation, and scale of each 3D Gaussian expressed
through a deformation field. The deformation field is com-
bined into a single vector processed by an MLP to capture
temporal differences. A 3D canonical space is divided into
a voxel grid and decomposed into six multi-resolution
planes. The model connects adjacent Gaussians using a
spatiotemporal structure encoder to predict their motion.
However, since this structure is fundamentally based on
forming a 3D canonical space and adding changes over
time, it has limitations when objects exhibit significant
changes.

To address this issue, the STG model presents a new rep-
resentation by including the temporal dimension directly
within the 3D Gaussians, thereby modeling 4D Gaussians
without relying on a 3D canonical space.

Figure 3 shows the entire learning process of the STG

Fig. 1. 3DGS model training process[4]

Fig. 2. Dynamic model based 3DGS model[5]

1150 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

model. The STG model represents temporal opacity using
1D Gaussians, where opacity decreases as the difference
between the prominent timestamp and the current time-
stamp increases. Polynomial functions model changes in
position and rotation, allowing Gaussians to form trajecto-
ries over time. For color representation, instead of SH co-
efficients, the STG model uses basic RGB values along
with features for viewing direction and time. These features
are splatted to image space and categorized, with the final
pixel intensity generated through a two-layer MLP. This
approach results in a more compact model with fewer pa-
rameters than traditional SH coefficient encoding.

Table 1 compares the number of parameters for the 3DGS
and STG models. The time component of the STG model
includes the coefficients of polynomials that define position
and rotation, as well as the prominently displayed timestamp
and time scale. Therefore, the STG model can represent dy-
namic scenes with fewer parameters than the 3DGS model.

Ⅲ. STG compaction using KNN algorithm

To represent a 4D dynamic scene, the STG model takes
the form of a temporal component combined with 3D
Gaussians. Also, the STG model applies a preprocessing
step [8], in which the KNN algorithm is used to derive
pairs composed of the spatially closest Gaussians for each
timestamp. The distances between each pair are then meas-
ured and sorted in ascending order. The top 25% of these
closest Gaussian pairs are removed as pairs, effectively re-
ducing the total number of Gaussians. However, even after
this existing preprocessing, the size of the trained model
remains approximately 29MB, indicating that significant
memory capacity is still required. Therefore, a more effi-
cient method for removing Gaussians is needed. To address
this issue, this paper proposes an efficient pruning method
for STG model compaction by applying the KNN algo-
rithm spatiotemporally.

Fig. 3. Learning process of Spacetime Gaussian (STG)

Position Scale Rotation Color Opacity Time
component Total

3DGS 3 3 4 48 1 x 59

STG 3 3 4 9 1 15 35

Table 1. The number of parameters in the 3DGS and STG model configurations

Jong-Min Lee et al.: Efficient 4DGS Model Compression Using a Spatiotemporal KNN Algorithm 1151

1. Applying KNN algorithm spatiotemporally

In the existing method of the STG model, the KNN algo-
rithm is applied independently for each timestamp, consid-
ering only spatial correlations while neglecting the tempo-
ral correlations between Gaussians. To account for the tem-
poral relationships among Gaussians, we utilize the equa-
tions for the position and rotation of the STG model.

 
  

∑   


 
     

     
 

   
 

(1)

 
  

 ∑    


 
     

     
 

   


(2)

In equations (1) and (2), 
 represents the timestamps

when the Gaussians are most prominently displayed. The

initial value of 
 is determined based on the temporal axis

of the frame to which the Gaussian belongs. As training
progresses, the opacity is optimized, and accordingly, the

value of 
 also changes. 

 and 
 represent the positions

and rotations of the Gaussians at timestamp 
.  and 

are hyper parameters that determine the degree of the
polynomial. Higher values for these parameters increase
the capacity to represent temporal changes but also increase

the model size.  and  are the coefficients modeling

the changes over time, respectively. As the current time-

stamp diverges from 
, the changes in position and rota-

tion increase.
We use the KNN algorithm to select Gaussians at time-

stamp 
 that share the same nearest neighbors in positions

and rotations. The same approach is applied at the current
time , achieving spatial correlations for each timestamp.
To establish temporal correlations, we select pairs of
Gaussians that share the same nearest neighbors across
both timestamps. This indicates that the nearest Gaussians
are consistent when each is most visible and changes over
time, suggesting that the matched pairs have similar time
trajectories. Additionally, each pair follows the index of the
reference Gaussian input to KNN. In other words, the in-
dices of each pair match the order of the reference
Gaussians input to KNN.

Figure 4 shows the process of applying the spatio-
temporal KNN algorithm to the STG model. As shown in
Figure 4, Gaussians A, B, and C change in position and
rotation over time. The timestamps when each Gaussian is

most prominently displayed are denoted as 
 , 

 , and


 respectively. Taking Gaussian A as the reference, when

the timestamp is 
 , the closest neighbor in terms of posi-

tion is Gaussian B, which also exhibits the most similar
rotation. When considering the timestamp , the changes
in position and rotation of Gaussian A are most similar to

Fig. 4. Process of spatiotemporal KNN algorithm

1152 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

those of Gaussian B. Therefore, efficient pruning can be
achieved by replacing two Gaussians with similar temporal
trajectories with one.

2. Adaptive pruning based on rendering loss

In the preprocessing of the STG model, the distances be-
tween the matched Gaussian pairs, determined by the KNN
algorithm, are calculated and sorted in ascending order.
The top 25% of these Gaussian pairs are then removed
based on their proximity. This method assumes that spa-
tially close Gaussians share similar characteristics.
Although the KNN algorithm already pairs spatially ad-
jacent Gaussians, sorting the Gaussian pairs based on prox-
imity allows for further selection of the closest pairs to re-
duce redundancy. However, applying this method during
training results in the removal of a significant number of
Gaussians, which can fall short of the minimum number
required to accurately represent a 3D scene, leading to no-
ticeable degradation in rendering quality. Therefore, in the
design of the proposed method, a more suitable criterion
for removing Gaussians from the matched pairs is required.

Figure 5 illustrates the proposed method, where the re-
moval rate for the matched Gaussian pairs is adaptively ad-
justed based on the rendering quality loss. After the dis-
tances between the matched Gaussian pairs are sorted in
ascending order, if the rendering loss increases, the re-

moval rate decreases, and if the rendering loss decreases,
the removal rate increases. In this approach, maximum and
minimum thresholds are set for the removal rate to prevent
excessive removal of Gaussians while reducing re-
dundancy, ensuring that enough Gaussians remain to main-
tain scene rendering quality. In this way, the Gaussian pairs
to be removed are selected based on the closest distances
according to the determined rate.

3. Selection of KNN pairs based on the
prominently displayed timestamp

According to the pruning ratio, one Gaussian from each
selected pair is removed. Smaller Gaussians are known to
have a relatively minimal impact on rendering quality[9], so
the smaller Gaussian from each pair is typically removed.
However, pruning based solely on Gaussian size does not
consider temporal coherence, which can result in a decrease
in rendering quality.

To improve temporal coherence, we propose using the

prominently displayed timestamp 
 as a removal criterion

to better reflect temporal characteristics. The removal crite-
rion is to eliminate the Gaussian with the higher prominent
timestamp value. Since the Gaussian with the lower prom-
inent timestamp appears earlier in the dynamic scene, it
could better represent the crucial visual information of the
initial scene. As these pruning processes occur during train-

Fig. 5. Adaptive pruning based on the rendering loss

Jong-Min Lee et al.: Efficient 4DGS Model Compression Using a Spatiotemporal KNN Algorithm 1153

ing, the remaining Gaussian is optimized to cover the elim-
inated Gaussian in the pruning.

After pruning, the remaining Gaussians are splatted into
image space and passed through a small MLP to generate
the final rendered image. The rendering loss, obtained by
comparing the rendered image with the original image, is
then optimized. We used the basic loss function of the STG
model and did not add any term to compensate for the loss
caused by pruning. Equation (3) represents the rendering
loss function.

         (3)

Ⅳ. Experimental results

In the experiments, the STG model[8] is trained using the
Mirror sequence[7], which consists of 15 multi-view videos,
following the INVR CTC. Each video has a duration of
3 seconds at 32 frames per second, and the training is con-
ducted over 1 second using all views except for two test
views (v06 and v08). During training, the proposed method
is applied, and the test views are rendered using the trained

model to evaluate compression efficiency based on com-
pression ratio and rendering quality. Performance is as-
sessed by comparing Bit-Per-Second (BPS), which repre-
sents the number of bits transmitted per second, with the
Peak Signal-to-Noise Ratio (PSNR) of the rendered test
views’ quality.

Table 2 presents a comparison of the BPS-PSNR per-
formance between the trained STG model with and without
preprocessing, as well as the STG model trained with the
proposed pruning method. The pruning method is applied
every 100 training iterations, with training ranges defined
as {Case 1, Case 2, Case 3, Case 4}, where the range pro-
gressively increases from Case 1 to Case 4. In Case 1,
pruning is applied from 6k to 12k iterations; in Case 2,
from 6k to 16k; and in subsequent cases, the pruning range
increases by 4k iterations, up to Case 4. Figure 6 illustrates
the Rate-Distortion (RD) curves corresponding to the re-
sults in Table 2.

Table 3 compares the BPS-PSNR performance when ap-
plying scale and prominently displayed timestamp as cri-
teria for removing Gaussians in the preprocessed model.
The proposed method and comparison methods all render
the same test views from the same multi-view video

of STG Model size (MB) Mbps PSNR
Trained model 433,936 62.9 527.68 35.58

Trained model with preprocessing 204,371 29.62 248.53 35.32

Trained model
with proposed

method

Case 1 199,736 28.95 242.89 35.39
Case 2 164,985 23.91 200.64 35.01
Case 3 141,714 20.54 172.34 34.8
Case 4 124,224 18.01 151.07 34.26

Table 2. BPS-PSNR performance comparison of the proposed method and w/wo preprocessing for the trained STG model

Trained model with preprocessing Scale Prominently displayed timestamp
Mbps PSNR Mbps PSNR Mbps PSNR

Uncompacted 3.75 35.32 - - - -
Case 1 - - 132.41 34.54 133.37 34.62
Case 2 - - 91.52 33.78 91.42 33.68
Case 3 - - 70.67 32.18 68.72 32.36
Case 4 - - 55.78 31.13 56.55 31.08

Table 3. Experimental results on the comparison of BPS-PSNR performances

1154 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

Fig. 6. BPS-PSNR performance comparison

Fig. 7. BPS-PSNR performance comparison

sequences. Figure 7 presents the RD curves for the results
in Table 3. From the results, it can be observed that the
proposed method achieves superior BPS-PSNR perform-
ance compared to existing approaches.

The experimental results demonstrated that preprocessing
in the existing STG model[8] effectively pruned Gaussians
at each timestamp, leveraging spatial correlations.
Moreover, applying the proposed method during training
showed superior BPS-PSNR performance. In the quantita-
tive results, compared to the trained STG model, the pro-
posed method achieves a 54% reduction in model size with
only a 0.2 dB decrease in PSNR. Additionally, when com-

pared to the trained STG model with preprocessing, the
proposed method reduces the model size by 2.26% while
yielding a 0.07 dB improvement in PSNR.

However, there was no significant difference in
BPS-PSNR performance between the models that selected
Gaussians based on scale and the prominently displayed
timestamp. While the timestamp is an important factor rep-
resenting the temporal continuity of Gaussians, the results
confirmed that the key information of the scene is primarily
determined by spatial characteristics. In summary, although
a lower prominent timestamp may better represent the ini-
tial scene, it does not always result in a significant im-
provement in PSNR rendering quality.

Ⅴ. Conclusion

In this paper, we propose an efficient compaction meth-
od of the STG model, an explicit representation model,
aimed at enhancing the compression of 6DoF immersive
video. Initially, spatial compaction is applied to the STG
through preprocessing. Then, during dynamic multi-view
training, the proposed method performs spatiotemporal
pruning. This approach enables the efficient representation
of dynamic 3D scenes while achieving efficient com-
paction. The proposed method outperforms the existing
model in terms of BPS-PSNR performance. Additionally,
this method can be applied to various dynamic 3DGS mod-
els utilizing explicit representation, offering significant po-
tential for compressing 6DoF immersive video through en-
hanced representation and compaction in dynamic 3DGS
models.

References

[1] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G.
Wetzstein, “Implicit neural representations with periodic activation
functions,” Advances in Neural Information Processing Systems, vol.
13, pp.7462–7473, 2020.

Jong-Min Lee et al.: Efficient 4DGS Model Compression Using a Spatiotemporal KNN Algorithm 1155

doi: https://doi.org/10.48550/arXiv.2006.09661
[2] B. Mildenhal, P. P. Srinivasan, M. Tancik, J. T. Barron, R.

Ramamoorthi, and R. Ng, “Nerf: Representing Scenes as Neural
Radiance Fields for View Synthesis,” Proceedings of the European
Conference on Computer Vision, pp. 405-421, Aug. 2020.
 doi: https://doi.org/10.1007/978-3-030-58452-8_24

[3] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A.
Kanazawa, “Plenoxels: Radiance Fields without Neural Networks,”
Proceeding of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5501–5510, 2022.

 doi: https://doi.org/10.1109/CVPR52688.2022.00542
[4] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian

Splatting for Real-Time Radiance Field Rendering,” ACM
Transactions on Graphics, vol.42, No.4, pp.1–14, 2023.

 doi: https://doi.org/10.1145/3592433
[5] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang,

Wei Wei, Wenyu Liu, Qi Tian and Xinggang Wang, “4D Gaussian

Splatting for Real-Time Dynamic Scene Rendering,” arXiv preprint
arXiv:2310.08528, 2023.
doi: https://doi.org/10.48550/arXiv.2310.08528

[6] G. Lafruit, Y. Liao, and G. Bang, AhG on Implicit Neural Video
Representations (INVR), ISO/IEC JTC1/SC 29/WG04, M60641, Oct.
2022.

[7] Y. Liao, and G. Bang, BoG report on Implicit Neural Visual
Representation (INVR), ISO/IEC JTC 1/SC 29/WG04, M68163, Apr.
2024.

[8] Z. Li, Z. Chen, Z. Li, and Y. Xu, “Spacetime gaussian feature splatting
for real-time dynamic view synthesis,” Proceeding of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8508–
8520. 2024.
doi: https://doi.org/10.48550/arXiv.2312.16812

[9] J. C. Lee, et al. “Compact 3d gaussian splatting for static and dynamic
radiance fields.” arXiv preprint arXiv:2408.03822, 2024.
doi: https://doi.org/10.48550/arXiv.2408.03822

Introduction Authors

Jong-Min LEE
- 2024. 8 : B.S., School of Electronics and Information Engineering, Korea Aerospace University
- 2024. 9 ~ Present : Pursuing M.S., Dept. Electronics and Information Engineering, Korea Aerospace University
- ORCID : https://orcid.org/0009-0006-3823-7785
- Research interests : AI-based media signal processing, Immersive video

Dong-Ha Kim
- 2021. 8 : B.S., School of Electronics and Information Engineering, Korea Aerospace University
- 2023. 8 : M.S., Dept. Electronics and Information Engineering, Korea Aerospace University
- 2023. 9 ~ Present : Pursing Ph.D., Korea Aerospace University, Dept. Electronics and Information Engineering
- ORCID : https://orcid.org/0009-0007-9918-571X
- Research interests : AI-based media signal processing, Implicit neural presentation, Immersive video

JunYoung Jeong
- 2013. 5 : B.S., Dept. Electrical Engineering, Purdue University
- 2016. 5 : M.S., Dept. Electrical Engineering, Purdue University
- 2016. 10 ~ Present : Senior Researcher, Electronics and Telecommunications Research Institute (ETRI)
- ORCID : https://orcid.org/0000-0002-2457-1647
- Research interests : Radiance-field model lightweight and compression

1156 방송공학회논문지 제29권 제7호, 2024년 12월 (JBE Vol.29, No.7, December 2024)

Introduction Authors

GwangSoon Lee
- 1993 : B.S., Dept. Electronic Engineering, Kyungpook National University
- 1995 : M.S., Dept. Electronic Engineering, Kyungpook National University
- 2004 : Ph.D., Dept. Electronic Engineering, Kyungpook National University
- 2001 ~ Present : Principle Researcher/Team Leader, Electronics and Telecommunications Research Institute (ETRI)
- ORCID : http://orcid.org/0000-0001-6981-2099
- Research interests : Immersive video processing and coding, Learning-based 3D representation and coding

Jae-Gon Kim
- 1990. 2 : B.S., Dept. Electronic Engineering, Kyungpook National University
- 1992. 2 : M.S., Dept. Electrical and Electronic Engineering, KAIST
- 2005. 2 : Ph.D., Dept. Electrical Engineering and Computer Science, KAIST
- 1992. 3 ~ 2007. 2 : Senior Researcher / Team Leader, Broadcasting Media Research Group, ETRI
- 2001. 9 ~ 2002. 11 : Staff Associate, Dept. Electrical Engineering, Columbia University, NY
- 2014. 12 ~ 2016. 1 : Visiting Scholar Video Signal Processing Lab., UC San Diego,
- 2007. 9 ~ Present : Professor, School of Electronics and Information Engineering, Korea Aerospace University
- ORCID : http://orcid.org/0000-0003-3686-4786
- Research interests : Video compression, Video signal processing, Immersive video

	Efficient 4DGS Model Compression Using a Spatiotemporal KNN Algorithm
	Abstract
	Ⅰ. Introduction
	Ⅱ. 3DGS and STG
	Ⅲ. STG compaction using KNN algorithm
	Ⅳ. Experimental results
	Ⅴ. Conclusion
	References

