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Efficient 4DGS Model Compression Using a Spatiotemporal KNN 
Algorithm
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Abstract

The MPEG INVR (Implicit Neural Visual Representation) Ad-hoc Group (AhG) is exploring potential standard technologies for 
efficient representation and compression of 3D spatial videos using the explicit representation model of 3DGS (3D Gaussian 
Splatting). This paper presents a compaction method for the Spacetime Gaussian (STG) model, which extends 3D Gaussians into 
4D spacetime domain. The proposed method applies a KNN algorithm spatiotemporally to prune STGs. During this process, the 
pruning ratio is adaptively adjusted based on the rendering quality loss to prevent excessive pruning and to maintain rendering 
quality. Experimental results show that the proposed method demonstrates improved compaction performance compared to the 
existing STG model in 6DoF video rendering, reducing the model size by 54% compared to the conventional STG model, with 
only a 0.2 dB reduction in visual quality.

Keyword : Implicit Neural Visual Representation (INVR), 3D Gaussian Splatting (3DGS), SpaceTime Gaussian (STG), 
KNN (K-Nearest Neighbor) 

Ⅰ. Introduction

Recently, Implicit Neural Representations (INR)[1], 
which represent 3D video through neural networks based 

on Neural Radiance Fields (NeRF)[2], have gained attention 
as new technologies for 3D video representation and 
compression. INR models are learned via Multi-Layer 
Perceptrons (MLP) and can synthesize novel dynamic 
scenes at various time frames and viewpoints using learned 
neural networks. To improve both the rendering speed and 
quality of 3D representation models, hybrid methods[3] that 
combine implicit and explicit representations, such as voxel 
grids, have also been explored. However, despite the accel-
eration of the rendering process through hybrid methods, 
there are still limitations in real-time processing of 3D 
videos.

3D Gaussian Splatting (3DGS)[4] was originally devel-
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oped as a technology optimized for real-time rendering of 
static 3D scenes. 3DGS results in faster rendering speeds 
compared to NeRF-based models by utilizing only explicit 
representation with 3D Gaussians. More recently, a dynam-
ic model [5], [8] incorporating a temporal dimension into 
the 3DGS framework has emerged. In [5], a canonical 
space is utilized to extend the static capabilities of 3DGS, 
enabling the handling of dynamic scenes. Another new ap-
proach for representing 3D dynamic scenes is based on the 
Spacetime Gaussian (STG), which extends 3D Gaussians 
into the 4D spacetime domain[8]. The STG model integrates 
3D Gaussians and temporal elements to represent changes 
in dynamic scenes, such as object emergence and motion, 
and captures temporal variations using time-based parame-
ters and temporal radial basis functions.

Meanwhile, the Moving Picture Experts Group (MPEG) 
has been evaluating implicit neural representations, hybrid 
representations, and explicit representations as new ap-
proaches for 2D/3D static and dynamic video representa-
tion and compression. To explore potential standardization, 
the Implicit Neural Visual Representation (INVR) Ad-hoc 
Group (AhG)[6] is conducting Exploration Experiments 
(EEs)[7]. EE2 focuses on investigating technologies to train 
and compress 6DoF (Degrees of Freedom) video using 3D 
INVR models. EE2.1 addresses NeRF-based implicit neural 
models and hybrid representations, while EE2.2 explores 
3DGS techniques that explicitly represent static 3D scenes 
and dynamic 3DGS models, including a temporal 
dimension.

This paper presents a compaction method for the STG 
model[8], which is a dynamic 3DGS model corresponding 
to INVR EE2.2. The STG model includes a preprocessing 
step that uses K-Nearest Neighbors (KNN) to group 
Gaussians along the same time axis and remove the top 
25% of the closest pairs based on the distance between 
Gaussians before training. However, despite this pre-
processing step, the resulting model still occupies approx-
imately 29MB of memory, indicating that further com-

pression techniques are required to make the STG model 
memory efficient.

In this paper, the Gaussians present at each timestamp 
undergo a preprocessing step that removes Gaussians based 
on spatial correlation, as in [8]. Additionally, the KNN al-
gorithm is applied spatiotemporally to compact the model 
while representing Gaussians that have been created or dis-
appeared during training. Following the Common Test 
Condition (CTC) of INVR EE 2.2, we train the STG model 
using the Mirror[7] sequence from the MIV (MPEG 
Immersive Video) dataset, which consists of multi-view 
videos. The results obtained from the proposed compaction 
method are compared to those from models trained without 
preprocessing and with preprocessing. Additionally, when 
applying the proposed method to the STG model, we com-
pare the compression results based on two criteria: scale 
and time distance. The proposed method demonstrates su-
perior compression performance relative to rendering qual-
ity compared to existing techniques.

In Section 2, we introduce the 3DGS model, which uses 
explicit representation to model static 3D scenes, and the 
STG model, which extends the static characteristics of 
3DGS by incorporating a temporal dimension. In Section 
3, a compaction method for the STG model that utilizes 
spatiotemporal KNN is presented. Section 4 details the ex-
perimental results of the proposed method, and Section 5 
concludes the paper.

Ⅱ. 3DGS and STG

1. 3DGS for static scene representation

3DGS[4] is a representative explicit model that utilizes 
3D Gaussians to represent 3D space. It converts multi-view 
images captured from various positions and angles into 
point clouds using Structure from Motion (SfM), with these 
points serving as the centroid of the 3D Gaussians.
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Figure 1 illustrates the learning process of the 3DGS 
model. The point clouds are used to initialize the 3D 
Gaussians. The volume of each Gaussian can be repre-
sented by a covariance matrix, which can be decomposed 
into scale and rotation matrices to represent the trans-
formed Gaussians during training. The color values are rep-
resented by Spherical Harmonics (SH) coefficients, with a 
higher degree of SH coefficients allowing for more detailed 
color representation. During the rendering process, the 3D 
Gaussians are projected onto a 2D plane. The 2D 
Gaussians are sorted in depth order for each pixel and ac-
cumulated to generate the rendered image. In addition, a 
densification process is applied to clone or split the 
Gaussians to fit the corresponding area. The parameters of 
each Gaussian, such as position, rotation, scale, color, and 
opacity are trained to minimize the difference between the 
rendered view and the provided multi-view images.

2. STG for dynamic scene representation

3DGS is optimized for the real-time representation of 

static 3D scenes, leading to the development of several dy-
namic models that incorporate a temporal dimension into 
the structure of 3DGS. Figure 2 shows one of these dynam-
ic models[5]. In this model, 3D space is constructed using 
explicit representations of 3D Gaussians, with changes in 
position, rotation, and scale of each 3D Gaussian expressed 
through a deformation field. The deformation field is com-
bined into a single vector processed by an MLP to capture 
temporal differences. A 3D canonical space is divided into 
a voxel grid and decomposed into six multi-resolution 
planes. The model connects adjacent Gaussians using a 
spatiotemporal structure encoder to predict their motion. 
However, since this structure is fundamentally based on 
forming a 3D canonical space and adding changes over 
time, it has limitations when objects exhibit significant 
changes.

To address this issue, the STG model presents a new rep-
resentation by including the temporal dimension directly 
within the 3D Gaussians, thereby modeling 4D Gaussians 
without relying on a 3D canonical space.

Figure 3 shows the entire learning process of the STG

Fig. 1. 3DGS model training process[4] 

Fig. 2. Dynamic model based 3DGS model[5]
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model. The STG model represents temporal opacity using 
1D Gaussians, where opacity decreases as the difference 
between the prominent timestamp and the current time-
stamp increases. Polynomial functions model changes in 
position and rotation, allowing Gaussians to form trajecto-
ries over time. For color representation, instead of SH co-
efficients, the STG model uses basic RGB values along 
with features for viewing direction and time. These features 
are splatted to image space and categorized, with the final 
pixel intensity generated through a two-layer MLP. This 
approach results in a more compact model with fewer pa-
rameters than traditional SH coefficient encoding.

Table 1 compares the number of parameters for the 3DGS 
and STG models. The time component of the STG model 
includes the coefficients of polynomials that define position 
and rotation, as well as the prominently displayed timestamp 
and time scale. Therefore, the STG model can represent dy-
namic scenes with fewer parameters than the 3DGS model.

Ⅲ. STG compaction using KNN algorithm

To represent a 4D dynamic scene, the STG model takes 
the form of a temporal component combined with 3D 
Gaussians. Also, the STG model applies a preprocessing 
step [8], in which the KNN algorithm is used to derive 
pairs composed of the spatially closest Gaussians for each 
timestamp. The distances between each pair are then meas-
ured and sorted in ascending order. The top 25% of these 
closest Gaussian pairs are removed as pairs, effectively re-
ducing the total number of Gaussians. However, even after 
this existing preprocessing, the size of the trained model 
remains approximately 29MB, indicating that significant 
memory capacity is still required. Therefore, a more effi-
cient method for removing Gaussians is needed. To address 
this issue, this paper proposes an efficient pruning method 
for STG model compaction by applying the KNN algo-
rithm spatiotemporally.

Fig. 3. Learning process of Spacetime Gaussian (STG)

Position Scale Rotation Color Opacity Time 
component Total

3DGS 3 3 4 48 1 x 59

STG 3 3 4 9 1 15 35

Table 1. The number of parameters in the 3DGS and STG model configurations
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1. Applying KNN algorithm spatiotemporally

In the existing method of the STG model, the KNN algo-
rithm is applied independently for each timestamp, consid-
ering only spatial correlations while neglecting the tempo-
ral correlations between Gaussians. To account for the tem-
poral relationships among Gaussians, we utilize the equa-
tions for the position and rotation of the STG model.

 
  

∑   


 
     

     
 

   
 

(1)

     

 
  

 ∑    


 
     

     
 

   


(2)

      

In equations (1) and (2), 
 represents the timestamps 

when the Gaussians are most prominently displayed. The 

initial value of 
 is determined based on the temporal axis 

of the frame to which the Gaussian belongs. As training 
progresses, the opacity is optimized, and accordingly, the 

value of 
 also changes. 

  and 
  represent the positions 

and rotations of the Gaussians at timestamp 
.   and  

are hyper parameters that determine the degree of the 
polynomial. Higher values for these parameters increase 
the capacity to represent temporal changes but also increase 

the model size.   and   are the coefficients modeling 

the changes over time, respectively. As the current time-

stamp diverges from 
, the changes in position and rota-

tion increase.
We use the KNN algorithm to select Gaussians at time-

stamp 
 that share the same nearest neighbors in positions 

and rotations. The same approach is applied at the current 
time , achieving spatial correlations for each timestamp. 
To establish temporal correlations, we select pairs of 
Gaussians that share the same nearest neighbors across 
both timestamps. This indicates that the nearest Gaussians 
are consistent when each is most visible and changes over 
time, suggesting that the matched pairs have similar time 
trajectories. Additionally, each pair follows the index of the 
reference Gaussian input to KNN. In other words, the in-
dices of each pair match the order of the reference 
Gaussians input to KNN.

Figure 4 shows the process of applying the spatio-
temporal KNN algorithm to the STG model. As shown in 
Figure 4, Gaussians A, B, and C change in position and 
rotation over time. The timestamps when each Gaussian is 

most prominently displayed are denoted as 
 , 

 , and 


  respectively. Taking Gaussian A as the reference, when 

the timestamp is 
 , the closest neighbor in terms of posi-

tion is Gaussian B, which also exhibits the most similar 
rotation. When considering the timestamp , the changes 
in position and rotation of Gaussian A are most similar to 

Fig. 4. Process of spatiotemporal KNN algorithm 
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those of Gaussian B. Therefore, efficient pruning can be 
achieved by replacing two Gaussians with similar temporal 
trajectories with one.

 
2. Adaptive pruning based on rendering loss

In the preprocessing of the STG model, the distances be-
tween the matched Gaussian pairs, determined by the KNN 
algorithm, are calculated and sorted in ascending order. 
The top 25% of these Gaussian pairs are then removed 
based on their proximity. This method assumes that spa-
tially close Gaussians share similar characteristics. 
Although the KNN algorithm already pairs spatially ad-
jacent Gaussians, sorting the Gaussian pairs based on prox-
imity allows for further selection of the closest pairs to re-
duce redundancy. However, applying this method during 
training results in the removal of a significant number of 
Gaussians, which can fall short of the minimum number 
required to accurately represent a 3D scene, leading to no-
ticeable degradation in rendering quality. Therefore, in the 
design of the proposed method, a more suitable criterion 
for removing Gaussians from the matched pairs is required.

Figure 5 illustrates the proposed method, where the re-
moval rate for the matched Gaussian pairs is adaptively ad-
justed based on the rendering quality loss. After the dis-
tances between the matched Gaussian pairs are sorted in 
ascending order, if the rendering loss increases, the re-

moval rate decreases, and if the rendering loss decreases, 
the removal rate increases. In this approach, maximum and 
minimum thresholds are set for the removal rate to prevent 
excessive removal of Gaussians while reducing re-
dundancy, ensuring that enough Gaussians remain to main-
tain scene rendering quality. In this way, the Gaussian pairs 
to be removed are selected based on the closest distances 
according to the determined rate.

3. Selection of KNN pairs based on the 
prominently displayed timestamp

According to the pruning ratio, one Gaussian from each 
selected pair is removed. Smaller Gaussians are known to 
have a relatively minimal impact on rendering quality[9], so 
the smaller Gaussian from each pair is typically removed. 
However, pruning based solely on Gaussian size does not 
consider temporal coherence, which can result in a decrease 
in rendering quality.

To improve temporal coherence, we propose using the 

prominently displayed timestamp 
 as a removal criterion 

to better reflect temporal characteristics. The removal crite-
rion is to eliminate the Gaussian with the higher prominent 
timestamp value. Since the Gaussian with the lower prom-
inent timestamp appears earlier in the dynamic scene, it 
could better represent the crucial visual information of the 
initial scene. As these pruning processes occur during train-

Fig. 5. Adaptive pruning based on the rendering loss
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ing, the remaining Gaussian is optimized to cover the elim-
inated Gaussian in the pruning.

After pruning, the remaining Gaussians are splatted into 
image space and passed through a small MLP to generate 
the final rendered image. The rendering loss, obtained by 
comparing the rendered image with the original image, is 
then optimized. We used the basic loss function of the STG 
model and did not add any term to compensate for the loss 
caused by pruning. Equation (3) represents the rendering 
loss function.

         (3)

Ⅳ. Experimental results

In the experiments, the STG model[8] is trained using the 
Mirror sequence[7], which consists of 15 multi-view videos, 
following the INVR CTC. Each video has a duration of 
3 seconds at 32 frames per second, and the training is con-
ducted over 1 second using all views except for two test 
views (v06 and v08). During training, the proposed method 
is applied, and the test views are rendered using the trained 

model to evaluate compression efficiency based on com-
pression ratio and rendering quality. Performance is as-
sessed by comparing Bit-Per-Second (BPS), which repre-
sents the number of bits transmitted per second, with the 
Peak Signal-to-Noise Ratio (PSNR) of the rendered test 
views’ quality.

Table 2 presents a comparison of the BPS-PSNR per-
formance between the trained STG model with and without 
preprocessing, as well as the STG model trained with the 
proposed pruning method. The pruning method is applied 
every 100 training iterations, with training ranges defined 
as {Case 1, Case 2, Case 3, Case 4}, where the range pro-
gressively increases from Case 1 to Case 4. In Case 1, 
pruning is applied from 6k to 12k iterations; in Case 2, 
from 6k to 16k; and in subsequent cases, the pruning range 
increases by 4k iterations, up to Case 4. Figure 6 illustrates 
the Rate-Distortion (RD) curves corresponding to the re-
sults in Table 2. 

Table 3 compares the BPS-PSNR performance when ap-
plying scale and prominently displayed timestamp as cri-
teria for removing Gaussians in the preprocessed model. 
The proposed method and comparison methods all render 
the same test views from the same multi-view video 

# of STG Model size (MB) Mbps PSNR
Trained model 433,936 62.9 527.68 35.58

Trained model with preprocessing 204,371 29.62 248.53 35.32

Trained model 
with proposed 

method

Case 1 199,736 28.95 242.89 35.39
Case 2 164,985 23.91 200.64 35.01
Case 3 141,714 20.54 172.34 34.8
Case 4 124,224 18.01 151.07 34.26

Table 2. BPS-PSNR performance comparison of the proposed method and w/wo preprocessing for the trained STG model

Trained model with preprocessing Scale Prominently displayed timestamp
Mbps PSNR Mbps PSNR Mbps PSNR

Uncompacted 3.75 35.32 - - - -
Case 1 - - 132.41 34.54 133.37 34.62
Case 2 - - 91.52 33.78 91.42 33.68
Case 3 - - 70.67 32.18 68.72 32.36
Case 4 - - 55.78 31.13 56.55 31.08

Table 3. Experimental results on the comparison of BPS-PSNR performances
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Fig. 6. BPS-PSNR performance comparison

Fig. 7. BPS-PSNR performance comparison
 

sequences. Figure 7 presents the RD curves for the results 
in Table 3. From the results, it can be observed that the 
proposed method achieves superior BPS-PSNR perform-
ance compared to existing approaches.

The experimental results demonstrated that preprocessing 
in the existing STG model[8] effectively pruned Gaussians 
at each timestamp, leveraging spatial correlations. 
Moreover, applying the proposed method during training 
showed superior BPS-PSNR performance. In the quantita-
tive results, compared to the trained STG model, the pro-
posed method achieves a 54% reduction in model size with 
only a 0.2 dB decrease in PSNR. Additionally, when com-

pared to the trained STG model with preprocessing, the 
proposed method reduces the model size by 2.26% while 
yielding a 0.07 dB improvement in PSNR.

However, there was no significant difference in 
BPS-PSNR performance between the models that selected 
Gaussians based on scale and the prominently displayed 
timestamp. While the timestamp is an important factor rep-
resenting the temporal continuity of Gaussians, the results 
confirmed that the key information of the scene is primarily 
determined by spatial characteristics. In summary, although 
a lower prominent timestamp may better represent the ini-
tial scene, it does not always result in a significant im-
provement in PSNR rendering quality.

Ⅴ. Conclusion

In this paper, we propose an efficient compaction meth-
od of the STG model, an explicit representation model, 
aimed at enhancing the compression of 6DoF immersive 
video. Initially, spatial compaction is applied to the STG 
through preprocessing. Then, during dynamic multi-view 
training, the proposed method performs spatiotemporal 
pruning. This approach enables the efficient representation 
of dynamic 3D scenes while achieving efficient com- 
paction. The proposed method outperforms the existing 
model in terms of BPS-PSNR performance. Additionally, 
this method can be applied to various dynamic 3DGS mod-
els utilizing explicit representation, offering significant po-
tential for compressing 6DoF immersive video through en-
hanced representation and compaction in dynamic 3DGS 
models.
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